DTA and Dielectric Studies of a Substance with the Nematic, Smectic A, and Smectic C Polymorphism at Ambient and Elevated Pressures

Joanna Czub, Sebastian Pawlus^a, Monika Sekuła^a, Stanisław Urban, Albert Würflinger^b, and Roman Dąbrowski^c

Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland ^a Institute of Physics, Silesian University, Uniwersytecka 4, 40-007 Katowice, Poland ^b Faculty of Chemistry, Ruhr University of Bochum, D-44780 Bochum, Germany ^c Institute of Chemistry, Military University of Technology, 00-908 Warsaw, Poland

Reprint requests to Prof. S. U.; Fax: 048-12-6337086. E-mail: ufurban@cyf-kr.edu.pl

Z. Naturforsch. **58a**, 333 – 340 (2003); received February 17, 2003

For the first time the low frequency relaxation process in two smectic phases (smectic A and smectic C) was studied at elevated pressures with the aid of DTA and dielectric spectroscopy. The substance studied, 2-(4-hexyloxyphenyl)-5-octyl-pyrimidine (60PB8 in short) exhibits the nematic (N) – S_A – S_C phase sequence. The p-T phase diagram was established with DTA. However, the S_A – S_C transition was not observed in the DTA, but could be detected by dielectric relaxation measurements. The dielectric relaxation time measured as function of temperature and pressure, $\tau_{\parallel}(p,T)$, enabled us to calculate the activation volume, $\Delta^\# V = RT(\partial \ln \tau/\partial p)_T$, and activation enthalpy, $\Delta^\# H = R(\partial \ln \tau/\partial T^{-1})_p$. It was found that $\Delta^\# V(S_A) > \Delta^\# V(S_C)$ and $\Delta^\# H(N) \gg \Delta^\# H(S_A) > \Delta^\# H(S_C)$, indicating that the molecular rotations around the short axes are more feasible in the tilted S_C than in the orthogonal S_A phase.

Key words: Liquid Crystal; Dielectric Relaxation; p-T Phase Diagram; High Pressures.